Directed Components Analysis: An Analytic Method for the Removal of Biophysical Artifacts from EEG Data
نویسندگان
چکیده
Artifacts generated by biophysical sources (such as muscles, eyes, and heart) often hamper the use of EEG for the study of brain functions in basic research and applied settings. These artifacts share frequency overlap with the EEG, making frequency filtering inappropriate for their removal. Spatial decomposition methods, such as principal and independent components analysis, have been employed for the removal of the artifacts from the EEG. However, these methods have limitations that prevent their use in operational environments that require real-time analysis. We have introduced a directed components analysis (DCA) that employs a spatial template to direct the selection of target artifacts. This method is computationally efficient, allowing it to be employed in real-world applications. In this paper, we evaluate the effect of spatial undersampling of the scalp potential field on the ability of DCA to remove blink artifacts.
منابع مشابه
Implementing a Smart Method to Eliminate Artifacts of Vital Signals
Background: Electroencephalography (EEG) has vital and significant applications in different medical fields and is used for the primary evaluation of neurological disorders. Hence, having easy access to suitable and useful signal is very important. Artifacts are undesirable confusions which are generally originated from inevitable human activities such as heartbeat, blinking of eyes and facial ...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملAn adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography
Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reco...
متن کاملAutomatic removal of eye movement and blink artifacts from EEG data using blind component separation.
Signals from eye movements and blinks can be orders of magnitude larger than brain-generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. ...
متن کاملAutomatic Removal of Sparse Artifacts in Electroencephalogram
In this paper we propose a method to identify and remove artifacts, that have a relatively short duration, from complex EEG data. The method is based on the application of an ICA algorithm to three non-overlapping partitions of a given data, selection of sparse independent components, removal of the component, and the combination of three resultant signal reconstructions in one final reconstruc...
متن کامل